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1. INTRODUCTION

Let Qp be the field ofp-adic numbers with a p-adic valuation I . 1p that has
the properties

1x +Yip :s;; max(1 x Ip , [y Ip)

! xy p = I X Ip 1y Ip

and is so normalized that 1 pn 'p = p-n. As is well-known, Qp is a complete
metric space with respect to the distance function d(x, y) = 1 x - y Ip and
the field of rational numbers Q is dense in Qp •

We will consider functions defined on the set of p-adic integers

I = {x : 1 x Ip :s;; I},

with values in Qp . The theory of p-adic valued functions in the period from
the introduction ofp-adic numbers by Hensel [1] at the end of the nineteenth
century until very recent times resembles closely the theory of analytic
functions.

The study of p-adic valued functions from the point of view of the con
structive theory of functions and approximation theory was initiated in 1944
by Dieudonne [2], who proved that every continuous p-adic valued function
on a compact subset of Qp can be approximated uniformly by polynomials.
A more constructive proof of this result was given in 1958 by Mahler [3, 4]
(see also [5, Chap. 6]) for continuous functions on I. Mahler's theorem can be
stated as follows.

THEOREM A. Let f: 1--+ Qp be a continuous function and let

anU) = f (_1)n-1e (Z)f(k),
k~O
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k = 0,1,2, .... (l.l)
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Then the series

converges uniformly on I and

f(x) = f ak(f)(~) lor every x E I.
k~O
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(1.2)

(1.3)

Mahler's series (1.2) is clearly the analogue of Newton's interpolatory
series and it was natural to use this series since a continuous function I on I
is completely determined by its values on the set J = {O, 1, 2,...}, which is
dense in I. However, the remarkable fact here is that series (1.2) converges
uniformly for every continuous function I on I. This is clearly equivalent to
stating that for every continuous I on I

lim I anCf)l" = 0.
n-'J>(XJ

(1.4)

A simple analytic proof of this result was given recently in [6].
Another, even more remarkable property of Mahler's expansion is that

the nth partial sum of series (1.2) is a polynomial of best approximation of
degree ,,:;; n to / on I. This result can be established quite easily in p-adic
analysis.

If/is a continuous function on I, and an(f) is defined by (Ll), then

for every n = 0, 1, 2,.... (1.5)

On the other hand, since

for x E I,

from (1.3) it follows that

From inequalities (1.5) and (1.6) it follows that

Since any polynomial P of degree ,,:;; n is of the form

(1.6)

(1.7)
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we have, by (1.7),

max If(x) - P(x)lp = max (I ak(f) - C'ik jp, 1 ~ k ~ n; max Iak(f)l p)
XEI k~n+l

? max I ak(f)jp .
k~n+l

On the other hand, if

is the nth partial sum of Mahler's expansion (1.3) off, we have, by (1. 7),

max I f(x) - Pn*(x)lp = max 1 ai!)jp·
xEI k~n+l

Hence, if we denote by P n the set of all polynomials of degree ~ n, we have

max If(x) - Pn*(x)lp = inf (max If(x) - P(x)l p) = max I ak(f)lp.
XEI PE[JJ'lI XE! k~n+l

This fact that the nth partial sum of Mahler's expansion (1.3) of a con
tinuous function f on I is a polynomial of best approximation to f of degree
~ n seems to be quite important, even if the polynomials of best approxi
mation are not unique. It indicates that one should expect that the structural
properties of a continuous function f could be characterized, as in real
analysis, in terms of the asymptotic properties of the coefficients anU).

The aim of this paper is to present several results of this type. These results
are stated in Section 2. Section 3 contains lemmas necessary for the proof of
our theorems and, finally, Section 4 contains proofs of the theorems.

2. RESULTS

The first problem that will be considered here is closely related to Mahler's
Theorem A and it can be stated as follows.

Letfbe ap-adic valued function defined on I = {x: Ix jp ~ 1} and let the
p-adic numbers (anU)) be defined on J = {O, 1, 2, ...} by

anC!) = f (_l)n-k (Z) f(k),
k~O

n = 0, 1,2, ... (2.1)

What are the necessary and sufficient conditions for fin order that

lim I an(f)lp = O?
n->oo

(2.2)

In view of Mahler's Theorem A, the continuity offon I is clearly a sufficient
condition for (2.2). However, since anU) is defined in terms of the values of
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f on J, the continuity of f is certainly not a necessary condition for (2.2).
We will show here first that a weaker condition, which can be described as the
uniform continuity off on J, is both necessary and sufficient for (2.2). This
result can be stated more precisely as follows:

THEOREM 1. Let f be a p-adic valued function on the set J = {a, 1, 2, ...}
and let (an(f)) be the sequence of p-adic numbers defined by (2.1). We have
then

if and only if

wlp-t) = max I f(k + pi) - f(k)lp ---+ °(t ---+ (0). (2.3)
kEJ

Condition (2.3) is clearly satisfied iff is a continuous p-adic valued func
tion on I.

Next, we consider functions that satisfy continuity conditions stronger than
(2.3). For such functions it is natural to expect more precise results than (2.2).

THEOREM 2. Let f be a p-adic valued function defined on the set J =
{a, 1, 2, ...}, let (an(f)) be the sequence of p-adic numbers defined by (2.1) and
let °< ex ~ 1. We have then

if and only if

(n ---+ ex») (2.4)

(t ---+ ex»). (2.5)

A special case of Theorem 2 corresponding to ex = 1, in a slightly modified
form, was suggested as a research problem by Prof. Mahler in his lectures on
p-adic analysis at the Ohio State University in the summer quarter 1973.

A class of p-adic valued functions which satisfy both conditions (2.3) and
(2.5) are pi-periodic functions. A function!: 1---+ Qp is pi-periodic (t ~ l) if

f(x + pi) = f(x) for every x E I.

For pi-periodic functions on J we have the following much stronger result
than (2.4).

THEOREM 3. Let f: J ---+ Qp be a pi-periodic function with t ~ 1 and let
(an(f)) be the sequence of p-adic numbers defined by (2.1). Then for every
n ~pt

(2.6)
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If, in particular, (f(n)) is a pi-periodic sequence of rational integers,
Theorem 3 states that, for every n ?' pi, the integer

f (-1)" C)f(k)
,,~O k

is divisible by p[n/ptJ•

To study more general problems of this type we will choose an arbitrary
continuous, nondecreasing function Q on [0, 1], with Q(O) = 0, and we will
consider p-adic valued functions on I that satisfy the condition

(t ---* (0). (2.7)

In view of Theorem 2, it would be natural to expect the estimate

[ an(f)lp = (I)(Q(lln)) (2.8)

and, conversely, that (2.8) should imply (2.7). However, results of this
generality seem to be very difficult to prove, if they are correct at all. We are
able to show that (2.7) implies (2.8) if the speed with which Q converges to
zero is restricted by the condition

lim inf Q(Ajp) > O.
A..,O+ Q('\)

(2.9)

As examples of function satisfying this condition we mention in particular

Q(,\) = (log(l/'\)-~ (0 < ex < (0)

Q('\) = ,\~ (0 < ex < (0)

(2.10)

(2.11)

and
Q('\) = exp( -c1ogn(l/'\)) (0 < ex < 1), (2.12)

but the function Q('\) = exp( -1/'\) does not satisfy condition (2.9).

THEOREM 4. Let f be a p-adic valued function on J such that

(t ---* (0).

and let (an(f)) be the sequence of p-adic numbers defined by (2.1). If the
function Q satisfies condition (2.9), then

To prove a converse statement we need an even more restrictive hypothesis
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about Q. We shall have to assume that there exists a subinterval (0,0) of
(0, 1) such that

Q(Ajp)/(Q(A)) > lip for every AE (0, 0). (2.13)

This condition is satisfied if Q is defined as in (2.10) and (2.12). It is also
satisfied if Q(A) = A~ with °< a ~ 1, but it is clearly not satisfied if a > l.
More generally, (2.13) is satisfied whenever

1· . f Q(A}p) 1
1m In -->-.
"->0+ Q(A) p

THEOREM 5. Let f be a p-adic valued function on J and let (an(j)) be the
sequence ofp-adic numbers defined by (2.1). If the function Q satisfies condition
(2.13) and if

(n ---* CX)),

then

(t ---* 00).

3. LEMMAS

For the proof of Theorems 1-5 we need a number of preliminary results.
We will always assume here thatfis ap-adic valued function defined on the
set J = {O, 1, 2,oo.} and that

an(J) = ±(_l)n-k (Z) f(k),
k=O

We also write

n = 0, 1,2,.... (3.1 )

LEMMA 1. If

then f is bounded on J.

(3.2)

Proof of Lemma 1. Choose T such that

Mr(J) = max I f(k)l p >
O~k<T



196 AHLSWEDE AND BOJANIC

By (3.2) we can find a t such that

max If(k + pt) - f(k)lv :'( MT(f).
kEJ

We will show that

(3.3)

for every n EO J. (3.4)

This inequality is clearly satisfied if 0 :'( n :'( pt. Suppose therefore that
n ~ pt. Then spt :'( n < (s + 1) pt for some s ~ 1 and so

"fen) = fen - spt) + L (f(n - jpt + pt) - fen _ jpt)).
j~l

Since 0 :'( n - spt :'( pt, we have, by (3.3),

Hence (3.4) holds also if n ~ pt and the lemma is proved.

LEMMA 2. For every n ~ 0 and m ~ I we have

and

f(n + m) - fen) = kto (j~ ak+j(f)(7))(Z) . (3.6)

Proof of Lemma 2. Let Tmf(x) = f(x + m). The proof of relations (3.5)
and (3.6) consists essentially in expressing the coefficients of the translated
function T mf in terms of the coefficients off Let

an( Tmf) = f (-1 )n-k (Z) Tmf(k).
k~O

Then

In [6] it was proved that

(3.7)

(3.8)
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Relation (3.5) is clearly a consequence of (3.9) and (3.6) follows from (3.8)
and (3.9).

LEMMA 3. For every n ? °and t ? 1 we have

I an+pt(f)l p :'( max ((lIp)! an+j Ip, I :'(j :'(pt - I; wtCrt». (3.10)

Proof of Lemma 3. By (3.5), with m = pt, we have

P'-l t n

an+p,(f) = - ~l (~) an+j(f) + k~O (_l)n-k (Z)(f(k + pt) - f(k»

and (3.10) follows since p I(~t) for every j = 1'00" pt - 1.
While Lemma 3 is sufficient for the proof of Theorems 1-3, we need a

more refined version of that lemma for the proof of Theorem 4.

LEMMA 4. Let f: J ---+ Qp be a boundedfunction and let

A(n) = max I aif)!p .
k"";3n

Then, for every integer a ? I and t ? 1 we have

Proof of Lemma 4. By Lemma 3 we have, for every t ? 1 and n ? 0,

I an+pt(f)l j ) :'( max ((lIp)! an+/f)! p' 1 :'(j :'( pt - I; wtCrt».

Replacing here n by n + spt we find that

I an+<s+l)pt(f)! p :'( max ((l/p)! an+spt+j(f)! p' I :'( j :'( pt - I; wtCrt»

:'( max ((lIp) A(spt), 'rI-'tCrt».

Since this inequality holds for every n ? 0, it follows that

A((s + l)pt) :'( max((ljp) A(spt), wtCrt». (3.11)

In particular, we have

Hence, Lemma 4 is true if a = I.
Now, we show by induction that Lemma 4 is true for every integer a ? 1.

Suppose that the lemma is true for a = s. We have then, by induction
hypothesis,
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By (3.11) and (3.12) we have then

A«s + 2) pt) ~ max«(1j p) A«s + 1) pt), wtCrt»
~ max«(lj p) max«(lj pS) A(pt), Wf(rt», wtCrt»

~ max«(1jpHI) A(pt), Wf(rt»

and the lemma is proved.

LEMMA 5. Let Q be a continuous and nondecreasing function on [0, 1] with
Q(O) = O. .If there exists 0 E (0, 1) such that

then, as t ---+ 00,

for every ,\ E (0, 0), (3.13)

Proof of Lemma 5. Let T be a fixed integer such that Ij pT-I < 0 and
t > T. We have then

The first term on the right-hand side of (3.14) can be estimated as follows.
From (3.13) it follows that for every ,\ E (0,0) and s = 0, 1,2,... we have

By choosing ,\ = oj2 we obtain, in particular, the inequality

Q(rt) ~ Q(oj2pt+l) ~ r t- IQ(oj2)

or 1 ~ (pjQ(oj2») ptQ(p-t).

(3.15)

(3.16)

Next, suppose that pT ~ j ~ pt. Then pr-I ~ j ~ pr for some integer r
such that T + 1 ~ r ~ t. Hence

Since Ij pr-I ~ IjpT-I < 0, from (3.15), with ,\ = 1/ pr-I and s = t - r, it
follows that

Hence, for every j such that pT ~ j ~ pt, we have
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max jDOI})::S:; pt+l[J(p-t).
pT~j~pt
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(3.17)

Finally, from (3.14), (3.16) and (3.17) follows the statement of Lemma 5.

4. PROOFS OF THE THEOREMS

Proofof Theorem 1. Sufficiency of (2.3). Since this part of Theorem 1 was
essentially proved in [6], we shall give here only a brief outline of the proof.
Given s > 0, choose t such that

By (3.10) we have

I an+p,(f)! p ::s:; max(Olp)j an+i 11" 1 ::s:; j ::s:; pt - 1; Olps)). (4.1)

Since, by Lemma 1, f is a bounded function on J, we can without loss of
generality assume that If(k)lp ::s:; 1 for every k E J. From (2.1) follows then
that j anU)lp ::s:; 1 for all n ~ O. Using this inequality and (4.1) we find that
I an< /)1 p ::s:; lip for all n ~ pt. Continuing this process we find that

I anU)lp ::s:; lips for n ~ spt

and (2.2) follows since s can be chosen arbitrarily large.
Necessity of (2.3). Suppose next that (2.2) holds. Then

max I ak(f)l p < W
kEf

and

By (3.6) we have

(/1 ~ w). (4.2)

and so

(4.3)
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Let N be a fixed integer and pt ;? N. We have then

Hence

t

It ak+JCf)(~t) I ~ r t m!lx Iak+~(f) I + max t I ak+JCf)!v
j~l J v I~J~N J v N+1~j~p

~ rtN max I ar(f)lv + J1(N).
rEJ

From this inequality and (4.3) follows that

Consequently,

and (2.3) follows from (4.2) since N can be chosen arbitrarily large.

Proof of Theorem 2. Sufficiency of (2.5). Suppose first that (2.5) holds,
i.e., that f E Lip ex on J, 0 < ex ~ I. Then f is bounded on J and, as in the
proof of Theorem I we can assume, without loss of generality, that
I f(k)lv ~ I for k E J. It follows then that I aif)v ~ I for every n E J.

Also, since f E Lip ex on J, we have

w,(rt) = max If(k + pt) - f(k)lv ~ M,rat for t = 0, 1,2,... (4.4)
kEJ

Then, by Lemma 3, we have, for every n ;? 0 and t = 1,2, r .,.

Since I an(j)lv ~ I and 0 < ex ~ 1, from (4.5) it follows that

I an+v(j)lv ~ max«(ljp), M,ra
) ~ /L,ra

where /L, = max(l, M,), or

for m ;?op. (4.6)
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Using (4.5) with t = 2 and n ?o p, and (4.6), we find that

IGn+p2(f)11) ~ max (fLtP-ex-I, M t p-2ex)

~ fLt max (p-ex-I, p-2ex)

~ fLtP-2ex.

201

Hence,

for m ?o p2 + p.

Continuing this process we find by induction that

for m ?pr + ... +p. (4.7)

Now it is easy to see that this inequality implies (2.4). Suppose that
n ? p2 + p. Then, for some s ? 2, we have

pS + ... + p = p[(ps _ l)/(p - I)] ~ n < p[(p H I - I)/(p - 1)]

= pHI + ... + p.

Since pS+2 ? n(p - I) + p ? n, we have, by (4.7),

I Gn(f)lp ~ fLtp-sex ~ fLtP2exp-ls+2)cx ~ fLtp 2cxn-ex

for n ?o p2 +P and (2.4) follows.
Necessity of (2.5). Suppose next that (2.4) holds. We have then

for n ?o 1 (4.8)

where 0 < 1X ~ 1. As in the proof of the necessity part of Theorem I, we
have, by (4.3),

I
p' t I

li(n + pt) - i(n)l p ~ max I Gk+i(f)(~)
kEJ ]~1 ] 1)

for every n ?o O. Since

it follows, by (4.8), that for every k E J,

~ p-t 1~j~\t (k ~ j)CX (k + j)ex I Gk+i(f) IP

~ Mp-t max p-cx
b,;;:;r~.pt·
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Hence,

n~OforIf(n) + pt) - f(n)lp ~ Mp-~t

and (2.5) follows.

Proof of Theorem 3. Suppose that fen + pt) = fen) for n E J, with
t ); 1. The inequality (3.10) of Lemma 3 reduces then to

and it follows that for every r = 1, 2, ... we have

where M = max1(:j(:pt If(j)lp. If n ); pt we have rpt ~ n < (r + 1) pt
for some r ); 1 and so

since r > nlpt - 1. Let M = pm. Then

Since the p-adic value is always an integral power of p and

-[nlpt] < -nlpt + 1,

we must have

and Theorem 3 is proved.

Proof of Theorem 4. From (2.7) it follows that

for t = 1,2,... Since Q(p-t) --+ 0 (t --+ 00), this inequality implies, by Lemma
1, that f is bounded on J. We can assume, without loss of generality, that
I f(k)lp ~ 1 for every k E J. We have then I an(f)lp ~ 1 for every n ~ 0
and consequently

for n ); O. (4.10)

Next, from

1· . f Q(Ajp) 0
1m III -->
;\'0+ Q("\)

(4.11)
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it follows that we can find a constant c > 0 and an integer T ?o 1 such that

Q(>..jp)
0< A ~p-T < 1 => Q(A) ?o c.

Let s ?o 1 be an integer such that

and (4.12)

We have then, for t ?o T,

and it follows, by induction, that, for every integer a ?o 1,

It follows, in particular, that

Q(p-S-I-t) ?o p-S(s+!)Q(p-t).

Next, by Lemma 4 and (4.9) we have

(4.13)

Since .11 is monotone decreasing and pS+1 ?o 1 + s(s + 1), it follows that

.I1(pS+l+t) ~ .11«(1 + s(s + 1» pt) ~ max(p-Sls+!l.l1(pt), MQ(p-t». (4.14)

In particular, if t = T, we have by (4.10) and (4.12),

.I1(pS+I+T) ~ max(p-S(S+ll.l1(pT), MQ(p-T»

~ max(p-s(s+!), MQ(p-T»

~ MQ(p-T). (4.15)

Next, replacing t by s + 1 + Tin (4.14) and using inequalities (4.13) and
(4.15), we find that

.I1(p2Is+Il+T) ~ max(p-sIS+!l.l1(pS+I+T), MQ(p-S-I-T»

~ max(Mp-sls+!lQ(P-T), MQ(p-s-I-T»

~ MQ(p-s-I-T).

Continuing this argument, we find, by induction, that, for every r ?o 1,

.I1(pr(s+!)+T) ~ MQ(p-lr-I)(s+l)-T).
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Using (4.13) we find easily that

Q(p-lr-l)(8+lI-T) ~ p28(S+llQ(p-<r+l)(s+ll+T).

Hence,

Let, finally, n ;:? pS+l+T. Then pr(8+lHT ~ n < p(r+l)(8+11+T for some
r ;:? 1. By monotonicity of A and Q we have

A(n) ~ A(pr(8+lHT) ~ M p 28(s+1IQ(p-(r+l)(s+lI-T)

~ Mp 28(s+lIQ(lln)

and Theorem 4 is proved.

Proof of Theorem 5. We have, by hypothesis,

for n;:?1. (4.16)

We have, by Lemma 2,

for every n E J. Next, by (4.16),

From this inequality and (4.17) it follows that

(4.17)

Since the function Q satisfies condition (2.13), we have, by Lemma 5,

and Theorem 5 is proved.

(I ~ (0)
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